Thursday, October 16, 2014

From Neˇmec and Haberlandt to Plant Molecular Biology


The high regenerative capacity of plants is a crucial feature of their life strategy. It is an essential part of the mechanisms that both allow these sessile organisms to repair injury caused by pathogens, herbivores and abiotic factors and to undergo rapid vegetative reproduction, so allowing them to dominate in particular environmental niches. Furthermore, various forms of natural regeneration contribute to techniques that are widely used in plant propagation and plant breeding. The biological nature of plant regeneration has been studied since the very beginnings of plant physiology as a science. Research on regeneration of intact plants in vivo was conducted by Bohumil Ne ˇmec, and early studies of in vitro regeneration in plant tissue cultures were carried out by Gottlieb Haberlandt. At this stage, however, suggestions that somatic plant cells possessed a regeneration “totipotency” were in practice often not acknowledged. Nevertheless, real experiments demonstrated that the regenerative ability of particular cells and tissues is clearly determined by the specific interplay of both genetic (or epigenetic) and physiological factors. This makes some systems “nonresponsive” to the standard regeneration procedures.

This regenerative recalcitrancy hampers both the routine vegetative propagation of various plant species and the construction of genetically modified crops. This chapter addresses the basic historical background of studies on plant regeneration and discusses both the results and ideas acquired by means of classical anatomical and morphological studies in the light of our current state of information obtained using modern molecular techniques. The present knowledge of plant regeneration is also viewed in the light of studies of structure and function of the “stem cell niches” of multicellular organisms, examining their role in the ontogenesis of intact plants and in the processes of embryogenesis and organogenesis in vitro. With reference to other chapters in this book, the role of genetics for the realisation of these processes as well as the role of various regulatory factors, of both exogenous and endogenous nature – especially phytohormones – is also examined. The importance to classify regenerative processes unambiguously using exact terminology (in the context of the allied field of regenerative medicine) as a prerequisite for the formation and validation of appropriate working hypotheses is discussed. Finally, this chapter summarises the main problems of current research on regenerative processes in plants and outlines possible directions for solving problems of recalcitrant materials in the context of their use for application.

Related Posts by Categories :



0 komentar:

Post a Comment