After World War II, as the world’s population spiraled out of control, many governments became concerned that they would not be able to feed everyone within their borders. The specter of mass starvation loomed. Mexico was one of the first countries to sound the alarm. In 1944, it imported half the wheat it needed but wanted to become self-sufficient. The government hired the agronomist Norman Borlaug, who had worked with the Civilian Conservation Corps during the Great Depression, the U.S. Forestry Service, and at the DuPont Chemical Company, to find a solution. Funded with grants from the Ford Foundation and the Rockefeller Foundation, Borlaug turned his attention to the problem, and by 1956 Mexico was producing enough wheat to feed its population. Furthermore, within a few short years it was exporting wheat to other countries. Mexico’s quick turnaround combined with that seen in other populous countries was dubbed the Green Revolution.
Borlaug was a plant geneticist and microbiologist for DuPont when he accepted the position in Mexico. In the first few years, he experimented with 6,000 crossbreeds of wheat, producing varieties that were high yield and disease resistant. More important, he instituted two growing seasons per year, thereby doubling the amount of wheat the country produced. With Mexico as a template for success, Borlaug assisted other countries such as India and Pakistan in attaining food security. In 1970, Borlaug received the Nobel Peace Prize for his role in alleviating world hunger. He is often credited with saving more than 1 billion people from starvation through his work. Although Borlaug’s initial success predated the introduction of GM foods, as a plant geneticist he has always been a supporter of biotechnology as a solution to world hunger.
Among the critics of GM foods are those who do not object to them on principle but on the circumstances of their development. For instance, most GM crops have been developed to benefit the bottom line of large agricultural corporations. While GM seed may yield a greater harvest and prevent pest damage, it is also more expensive than non–GM seed, promotes environmentally damaging monoculture, cannot legally be reused by farmers, and sometimes requires the application of a corresponding herbicide (such as Monsanto’s Roundup). These conditions bode well for those who hold the patent on the seed but are not necessarily conducive to helping those who need help the most—subsistence farmers in the developing world who cannot afford the high-priced seed and herbicides. In fact, Vandana Shiva, a respected agriculture activist from India, believes that conditions surrounding the distribution of GM seed are destroying subsistence farmers’ ability to feed themselves.46 What smallholder farmers need, Shiva believes, is access to a variety of crops suitable for the land they cultivate and the promotion of time-honored traditions that protect the environment, such as crop rotation and natural pest control. What they do not need, she says, is GM seed that is grown specifically to become feed for livestock or as an ingredient in another product in which the farmer has no stake.
The Food and Agriculture Organization (FAO) of the United Nation’s 2004 annual report, The State of Food and Agriculture 2003–2004, called for a “gene revolution” on par with the Green Revolution of the 1960s that would bestow GM seed on those who would most benefit. In the next 30 years, the population of the poorest countries is forecasted to swell by 2 billion.
The gains of the Green Revolution have made continued population growth possible, and a new solution is needed. However, most GM seed planted worldwide is corn, along with lesser amounts of soybeans, canola, and cotton. The gene revolution needs to apply biotechnology to a wider range of crops. According to the FAO Director-General Dr. Jacques Diouf, “Neither the private nor the public sector has invested significantly in new genetic technologies for the so-called ‘orphan crops’ such as cowpea, millet, sorghum and tef that are critical for the food supply and livelihoods of the world’s poorest people.” Furthermore, according to the FAO: [GMOs] can provide farmers with disease-free planting materials and develop crops that resist pests and disease, reducing use of chemicals that harm the environment and human health. It can provide diagnostic tools and vaccines that help control devastating animal diseases. It can improve the nutritional quality of staple foods such as rice and cassava and create new products for health and industrial uses. India could also greatly benefit from a gene revolution. Predicted to overtake China as the world’s most populous country by 2050, India must attain food security by addressing the problems of soil erosion, water shortages, and rural poverty. According to C. S. Prakash, the director of the Center for Plant Biotechnology Research at Alabama’s Tuskegee University, “India also has serious problems of blast in rice, rust in wheat, leaf rust in coffee, viruses in tomato and chilies and leaf spot in groundnut across the country. These problems can be significantly minimised in an ecologically-friendly manner with the development of genetically reprogrammed seeds designed to resist these disease attacks, while minimising or even eliminating costly and hazardous pesticide sprays.” Even in the United States, some farmers are transitioning from traditional crops, such as wheat and corn (whose markets have fluctuated unfavorably) to transgenic crops that can benefit third world countries. Rice genetically modified
with proteins from human milk, saliva, and tears is being test-grown in Missouri in the hopes that it may be consumed by at-risk populations in countries that suffer from high death rates due to diarrhea.50 These GM crops could produce food that is medically beneficial in areas that have inadequate health care or sanitation systems. It could also help domestic farmers gain a better foothold in an industry that suffered an almost total collapse in the 1980s.
But would a gene revolution be overkill? Some believe the food problem requires a more simple solution. A low-tech agricultural practice called the system of rice intensification (SRI) could produce greater yields and require little in the way of scientific intervention. More than half of the world’s population depends on rice, and between 2007 and 2008 its price tripled, laying the groundwork for a possible humanitarian crisis in some of the world’s most fragile economies. Norman T. Uphoff, the former director of the Cornell International Institute for Food, Agriculture and Development (CIIFAD), developed the SRI as a way to help solve the global food crisis. No genetic engineering is necessary, according to Uphoff. Farmers simply plant rice early, give seedlings more room to grow, water them less, and rotate crops annually. Fewer seeds and deeper roots make for harvests roughly two to three times larger than traditional cultivation practices allow.51 If such processes are so easy, then why have farmers not adopted them sooner, ask critics of SRI. They believe the claims made for SRI are exaggerated and that the system cannot be replicated on a wide scale. While basic, it also requires much old-fashioned weeding by farmers. Some believe that this will negatively affect women in developing countries, who often undertake much of the heavy labor. Experts believe that GM food has yet to make an impact on securing the global food supply because it is not practiced on the crops that matter most to people in developing countries: potatoes, cassava, rice, wheat, millet, and sorghum.52 Ignoring these in favor of frost-resistant strawberries and stay-ripe bananas leaves GM food in the realm of a boutique industry rather than a marketplace necessity. There is no economic incentive for private companies to invest in research and development into the crops grown by subsistence farmers in the developing world, a phenomenon known as the “molecular divide.” Technology typically originates in the developed world but without economic incentives does not transfer to areas where it could help others most, particularly sub-Saharan Africa. That may be changing. In 2008, Monsanto announced plans to develop seeds that would double corn, soybean, and cotton yields by 2030 using less land and water. The effort is directed at “improv[ing] the lives of small and poor farmers by sharing [Monsanto’s] technology” without
charging royalties. As the journalist Andrew Pollack explained, the plan is “aimed at least in part at winning acceptance of genetically modified crops by showing that they can play a major role in feeding the world.”
Among the critics of GM foods are those who do not object to them on principle but on the circumstances of their development. For instance, most GM crops have been developed to benefit the bottom line of large agricultural corporations. While GM seed may yield a greater harvest and prevent pest damage, it is also more expensive than non–GM seed, promotes environmentally damaging monoculture, cannot legally be reused by farmers, and sometimes requires the application of a corresponding herbicide (such as Monsanto’s Roundup). These conditions bode well for those who hold the patent on the seed but are not necessarily conducive to helping those who need help the most—subsistence farmers in the developing world who cannot afford the high-priced seed and herbicides. In fact, Vandana Shiva, a respected agriculture activist from India, believes that conditions surrounding the distribution of GM seed are destroying subsistence farmers’ ability to feed themselves.46 What smallholder farmers need, Shiva believes, is access to a variety of crops suitable for the land they cultivate and the promotion of time-honored traditions that protect the environment, such as crop rotation and natural pest control. What they do not need, she says, is GM seed that is grown specifically to become feed for livestock or as an ingredient in another product in which the farmer has no stake.
The Food and Agriculture Organization (FAO) of the United Nation’s 2004 annual report, The State of Food and Agriculture 2003–2004, called for a “gene revolution” on par with the Green Revolution of the 1960s that would bestow GM seed on those who would most benefit. In the next 30 years, the population of the poorest countries is forecasted to swell by 2 billion.
The gains of the Green Revolution have made continued population growth possible, and a new solution is needed. However, most GM seed planted worldwide is corn, along with lesser amounts of soybeans, canola, and cotton. The gene revolution needs to apply biotechnology to a wider range of crops. According to the FAO Director-General Dr. Jacques Diouf, “Neither the private nor the public sector has invested significantly in new genetic technologies for the so-called ‘orphan crops’ such as cowpea, millet, sorghum and tef that are critical for the food supply and livelihoods of the world’s poorest people.” Furthermore, according to the FAO: [GMOs] can provide farmers with disease-free planting materials and develop crops that resist pests and disease, reducing use of chemicals that harm the environment and human health. It can provide diagnostic tools and vaccines that help control devastating animal diseases. It can improve the nutritional quality of staple foods such as rice and cassava and create new products for health and industrial uses. India could also greatly benefit from a gene revolution. Predicted to overtake China as the world’s most populous country by 2050, India must attain food security by addressing the problems of soil erosion, water shortages, and rural poverty. According to C. S. Prakash, the director of the Center for Plant Biotechnology Research at Alabama’s Tuskegee University, “India also has serious problems of blast in rice, rust in wheat, leaf rust in coffee, viruses in tomato and chilies and leaf spot in groundnut across the country. These problems can be significantly minimised in an ecologically-friendly manner with the development of genetically reprogrammed seeds designed to resist these disease attacks, while minimising or even eliminating costly and hazardous pesticide sprays.” Even in the United States, some farmers are transitioning from traditional crops, such as wheat and corn (whose markets have fluctuated unfavorably) to transgenic crops that can benefit third world countries. Rice genetically modified
with proteins from human milk, saliva, and tears is being test-grown in Missouri in the hopes that it may be consumed by at-risk populations in countries that suffer from high death rates due to diarrhea.50 These GM crops could produce food that is medically beneficial in areas that have inadequate health care or sanitation systems. It could also help domestic farmers gain a better foothold in an industry that suffered an almost total collapse in the 1980s.
But would a gene revolution be overkill? Some believe the food problem requires a more simple solution. A low-tech agricultural practice called the system of rice intensification (SRI) could produce greater yields and require little in the way of scientific intervention. More than half of the world’s population depends on rice, and between 2007 and 2008 its price tripled, laying the groundwork for a possible humanitarian crisis in some of the world’s most fragile economies. Norman T. Uphoff, the former director of the Cornell International Institute for Food, Agriculture and Development (CIIFAD), developed the SRI as a way to help solve the global food crisis. No genetic engineering is necessary, according to Uphoff. Farmers simply plant rice early, give seedlings more room to grow, water them less, and rotate crops annually. Fewer seeds and deeper roots make for harvests roughly two to three times larger than traditional cultivation practices allow.51 If such processes are so easy, then why have farmers not adopted them sooner, ask critics of SRI. They believe the claims made for SRI are exaggerated and that the system cannot be replicated on a wide scale. While basic, it also requires much old-fashioned weeding by farmers. Some believe that this will negatively affect women in developing countries, who often undertake much of the heavy labor. Experts believe that GM food has yet to make an impact on securing the global food supply because it is not practiced on the crops that matter most to people in developing countries: potatoes, cassava, rice, wheat, millet, and sorghum.52 Ignoring these in favor of frost-resistant strawberries and stay-ripe bananas leaves GM food in the realm of a boutique industry rather than a marketplace necessity. There is no economic incentive for private companies to invest in research and development into the crops grown by subsistence farmers in the developing world, a phenomenon known as the “molecular divide.” Technology typically originates in the developed world but without economic incentives does not transfer to areas where it could help others most, particularly sub-Saharan Africa. That may be changing. In 2008, Monsanto announced plans to develop seeds that would double corn, soybean, and cotton yields by 2030 using less land and water. The effort is directed at “improv[ing] the lives of small and poor farmers by sharing [Monsanto’s] technology” without
charging royalties. As the journalist Andrew Pollack explained, the plan is “aimed at least in part at winning acceptance of genetically modified crops by showing that they can play a major role in feeding the world.”
0 komentar:
Post a Comment